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Abstract
We investigate the bias dependence of the tunneling conductance between a spin-polarized (SP)
scanning tunneling microscope (STM) tip and the surface conduction states of a normal metal
with a Kondo adatom. Quantum interference between tip–host metal and tip–adatom–host
metal conduction paths is studied in the full range of the Fano parameter q . The spin-polarized
STM gives rise to a splitting of the Kondo peak and asymmetry in the zero-bias anomaly,
depending on the lateral tip–adatom distance. For increasing lateral distances, the Kondo peak
splitting shows a strong suppression and the spin-polarized conductance exhibits the standard
Fano–Kondo profile.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Kondo effect is an antiferromagnetic screening of a
localized magnetic moment by the host metallic electrons
below a characteristic Kondo temperature TK, which results in
the appearance of an additional peak in the system’s density
of states pinned to the Fermi energy. Being first observed
during studies of transport properties of bulk diluted magnetic
alloys [1], the Kondo effect was later on shown to affect the
conductance of single quantum dots (QDs) [2, 3], arrays of
QDs [4, 5] and possibly quantum point contacts [6, 7]. In
the emerging field of spintronics [8], the coupling of a single
QD to ferromagnetic leads can shed more light on fundamental
aspects of the Kondo physics and provide a basis for a design
of novel spintronic components [9–17].

The scanning tunneling microscope (STM) is widely
used for investigation of the Kondo effect at surfaces of
normal metals with adsorbed magnetic impurities (Kondo
adatoms) [18–26]. The possible examples are individual Co
atoms at Au(111), Cu(100) or Cu(111) surfaces [18–21], and
cobalt carbonyl Co(CO)n complexes or manganese phthalo-
cyanine (MnPc) molecules on top of Pb islands [22, 23].

In the present work we focus on the Kondo regime for
a system containing a ferromagnetic STM tip and a single
Kondo adatom on a metallic surface (figure 1). In this
system the conductance becomes spin-dependent, due to the
ferromagnetic (FM) tip, which leads to a Zeeman splitting in
the Kondo adatom density of states (DOS). Particular attention

Figure 1. Set-up of the SP-STM and the host metal with the Kondo
adatom. The interference between the channels td R and tc exhibits a
spin-polarized Fano–Kondo profile for the conductance.

is paid to the interplay between Kondo effect, quantum
interference of two possible tunneling paths (tip–adatom–host
and tip–host) and the ferromagnetism of the tip.

Our study differs from previous work in the same field [27]
mainly in the three aspects described below.

First. We present new results for the tunneling
conductance as a function of the bias for different lateral tip–
adatom separations R in the Kondo regime. This is an actual
task indeed, as in experiments with unpolarized systems, R
was shown to strongly affect the conductance [18, 19]. For
ferromagnetic tips, however, corresponding results are lacking.

Second. We discuss the small, large and intermediate
cases for the Fano parameter4 q [28–31]. We show that

4 The Fano parameter q gives the strength of the quantum interference
between different tunneling paths. It is proportional to the ratio between the
tip–adatom and tip–host hopping coefficients.
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the three cases above give different conductance patterns.
Experimentally, the large and small q limits are relevant
and have been realized for unpolarized conduction bands.
For example, in [21] it was shown that q alternates from
intermediate (q ≈ 1.13) to small (q ≈ 0.18) values by
changing the Cu crystal surface (Cu(100) and Cu(111)), in
which a Co adatom is deposited. The conductance profile
for the small q limit can also be experimentally observed
in quantum corrals [19]. Alternatively, manipulating the
molecular structure of the magnetic impurity on the Cu(100)
surface, it is possible to switch between the intermediate and
large q limits [22, 23].

Third. Instead of using a Lorentzian approximation for
the Kondo peak, we apply the well-established Doniach–
Sunjic formula [32, 33], whose validity is supported by nu-
merical calculations based on both numerical renormalization
group [32, 33], quantum Monte Carlo simulations [34] and by
the recent success in fitting experimental data [23].

Our results show that, for a tip situated right above the
Kondo adatom (R = 0), asymmetric zero-bias anomalies
appear, which are revealed as resonances and anti-resonances
in the conductance in the limits of large and small q ,
respectively. For q ≈ 1, the conductance demonstrates a
pronounced plateau in the region of small biases (eV ≈ 0).
The increase of R leads to a suppression of the tip-induced
adatom’s Zeeman splitting, thus resulting in a conductance
pattern that resembles experimental data for unpolarized
systems [18]. Finally, we verify that the Kondo peak splitting
strongly depends on the asymmetry between the tip–adatom
and adatom–host tunnelings.

This paper is organized as follows. In section 1 we
present the model adopted to describe the system under
study. In section 2 we derive an expression for the spin-
resolved conductance based on a perturbative expansion for the
tunneling Hamiltonian. In section 3 we discuss the numerical
results. Conclusions are presented in section 4.

2. The model

The description of the metallic host and its interaction with
the adatom is performed within the framework of the single
impurity Anderson model [35] with a half-filled noninteracting
conduction band:

HA =
∑

σ

∫
εc†

εσ cεσ dε +
∑

σ

εdσ d†
σ dσ + Und↑nd↓

+
√

�

π

∑

σ

∫
dε(c†

εσ dσ + H.c.), (1)

where all energies are measured from the Fermi level
coinciding with the center of the band (εF = 0) and extend
from −D to D. The operator

cεσ = ρ
−1/2
0

∑

�k
c�kσ δ(ε − εk), (2)

corresponds to a surface conduction state of the host metal with
an energy-independent density of states per spin ρ0.

The first term in equation (1) describes a two-dimensional
electron gas (2DEG) on the surface of a host metal. The second

and the third correspond to the adatom, which is characterized
by a single-particle orbital energy εdσ and Coulomb repulsion
U . The last term, proportional to

√
�, describes the coupling

between the adatom and the host metal conduction states, thus
introducing the broadenings of the adatom’s resonances at the
energies εdσ and εdσ + U . In the Kondo regime (T �
TK, εdσ < εF, εdσ + U > εF, � � |εdσ |, εdσ + U ) an
additional peak in the density of states having a half-width
�K = kBTK (kB is the Boltzmann constant and TK is the Kondo
temperature)5 appears exactly at the Fermi level.

The total STM Hamiltonian is

HSTM = HA + Htip + Htun, (3)

where Htip corresponds to free electrons in the tip:

Htip =
∑

�pσ

(ε �p + eV )a†
�pσ

a �pσ , (4)

with the operators a �pσ describing the bulk conduction states,
the bias is eV and

Htun =
∑

�pσ

[tσ
c a†

�pσ
Bσ ( �R) + H.c.] (5)

is the tunneling Hamiltonian that connects the tip with the host
metal via the operator

Bσ ( �R) =
[∫

Ñ−1
ε C̃εσ dε + qσ

R

√
π�ρ0dσ

]
. (6)

The normalization factor in equation (6) is

Ñε =
[
∑

�k
|ϕ�k( �R)|2δ(ε − εk)

]−1/2

, (7)

with ϕ�k( �R) ∼ ei�k �R being a wavefunction of the host conduction
electron.

The first term in equation (6) containing the operator

C̃εσ = Ñε

∑

�k
ϕ�k( �R)c�kσ δ(ε − εk), (8)

hybridizes the conduction states of the tip with the surface of
the host at a displaced lateral position �R from the adatom.

The second term describes the tunneling between the tip
and localized adatom’s level characterized by a spin-dependent
parameter (Fano factor) [37, 38]

qσ
R = (π�ρ0)

−1/2(tσ
d R/tσ

c ), (9)

defined as a ratio between the couplings tσ
d R of the tip–adatom

and tσ
c of the tip–host metal.
The Fano factor monitors the competition between the

tunneling channels in the system. It vanishes with the increase
of the tip–adatom lateral distance R, which can be modeled by
an exponentially decaying function [38]

qσ
R = qσ

R=0e−kF R . (10)

5 The Kondo temperature is calculated according to equation (24) of [36]
kBTK = √

�U/2 exp[πε0
d(ε0

d + U)/2�U ], where ε0
d is the energy of the

adatom’s occupied level.
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The decay of the Fano parameter with the increasing of
the lateral tip–adatom distance was already experimentally
explored in a system with a Co adatom on a Cu surface [21].
Indeed, the precise value of the Fano factor should be
determined from first-principles calculations of the hopping
elements tσ

c and tσ
d R , which depend on the choice of the STM

tip, host surface and adatom. As the interest here is to analyze
the conductance lineshape for the entire range of the Fano
factor, we consider it as a free parameter of the model, with
small, intermediate and large adopted values in the simulations
(see section 4).

In the present work we consider a ferromagnetic tip with
a spin-dependent density of states given by

ρσ
tip = ρ0[1 + σ Ptip], (11)

where σ = + or − for spins ↑ or ↓, respectively, and Ptip is a
polarization degree of the tip. The inequality between spin-up
and spin-down populations in the tip ρ

↑
tip > ρ

↓
tip introduces an

asymmetry in the splitting of the zero-bias anomaly as we will
see in section 4. The density of states for the unpolarized tip
ρ0 = ρtip(εF) is assumed to be equal to the density of states of
the host metal for simplicity.

3. Methodology

We calculate the tunneling conductance of the system treating
the coupling between tip and host metal (Htun) as a
perturbation. Within a second-order perturbation scheme, the
formula for the conductance [37] is

G = (e2/h)
∑

σ

∫
Tσ (ε, T, R, qσ

R)

[
− ∂

∂ε
f (ε − eV )

]
dε,

(12)
where

Tσ (ε, T, R, qσ
R) = Toσ {1 + |qσ

R |2}(ρσ
tip/ρ0)(ρ

σ
LDOS/ρ0), (13)

is an effective transmission coefficient with

Toσ = (2πρ0tσ
c )2. (14)

The local density of states (LDOS) appearing in equation (13)
is defined as

ρσ
LDOS = − 1

π

Im〈〈Bσ ( �R)|B†
σ ( �R)〉〉ε

1 + |qσ
R|2 , (15)

with 〈〈Bσ ( �R)|B†
σ ( �R)〉〉ε being the retarded Green function

thermally averaged over the eigenstates of the Hamiltonian (1).
Looking at equation (15), one sees that the LDOS depends

on non-orthonormal fermionic operators:

{C̃†
εσ , cε′σ } = Ñε√

ρ0
δ(ε − ε′)F �R(ε), (16)

where the spatial function F �R(ε) is given by

F �R(ε) =
∑

�k
ϕ�k( �R)δ(ε − εk) = ρ0 J0(k(ε)R), (17)

with J0 being the zeroth-order Bessel function.
The operator (6) can be expressed in terms of fermionic

operators orthonormal to cεσ by introducing

c̃εσ = N0

(
C̃εσ − Ñ0√

ρ0
F �R(0)cεσ

)
, (18)

with a normalization factor evaluated at the Fermi level:

N0 =
⎧
⎨

⎩1 −
∣∣∣∣∣

Ñ0√
ρ0

F �R(0)

∣∣∣∣∣

2
⎫
⎬

⎭

−1/2

. (19)

This leads to the following expression for Bσ ( �R):

Bσ ( �R) =
[∫

dε c̃εσ

Ñ0 N0

+ √
2

F �R(0)

ρ0
f0σ + qσ

R

√
π�ρ0dσ

]
,

(20)
where we introduce an operator

f0σ =
√

ρ0

2

∫
cεσ dε, (21)

which describes a conduction state centered at the adatom site.
As the Kondo effect occurs at low temperatures T � TK

and the tip bias is usually much smaller then the bandwidth,
eV � D, we evaluate equation (12) at T = 0, thus resulting
in

G(eV , T � TK, R) =
∑

σ

Gσ
max(ρ

σ
tip/ρ0)(ρ

σ
LDOS/ρ0) (22)

where
Gσ

max = (e2/h)Toσ {1 + |qσ
R|2} (23)

and

ρσ
LDOS/ρ0 = [1 − J 2

0 (kF R)] cos2 δσ
qR

+ sin2 δσ
qR

sin2 δσ
eV

+ 2J0(kF R) sin δσ
qR

cos δσ
qR

sin δσ
eV cos δσ

eV

+ J 2
0 (kF R) cos2 δσ

qR
cos2 δσ

eV . (24)

In the calculation of the above expression we used the
Green function identities for the zero-temperature Anderson
model [35]. The spin-dependent Fano factor phase shift δσ

qR

is defined as
tan δσ

qR
≡ |qσ

R |. (25)

In equation (24) the terms proportional to sin2 δσ
eV and

cos2 δσ
eV come from the direct tunneling paths tip–adatom–host

and tip–host, respectively. The interference between them is
given by the mixture term proportional to sin δσ

eV cos δσ
eV .

The spin-dependent phase shift δσ
ε for the conduction

states can be determined from the Doniach–Sunjic spectral
density [32, 33]:

ρσ
dd(eV ) = 1

π�
Re

[
i�K

(eV + σ�̃) + i�K

] 1
2

= 1

π�
sin2 δσ

eV ,

(26)

3



J. Phys.: Condens. Matter 21 (2009) 095003 A C Seridonio et al

where �̃ gives the Kondo peak splitting. According to [11, 14]
the Kondo peak splitting comes from the ferromagnetic
exchange interaction of the majority spin between the adatom
and the STM tip. It gives rise to a local magnetic field at the
adatom’s site that leads to a Zeeman splitting �̃ of the adatom’s
energy level:

�̃ = εd↓ − εd↑, (27)

which coincides with the Kondo peak splitting [11, 14].
The value of the splitting can be determined using a variety

of methods, such as the self-consistent procedure [11, 15], scal-
ing approach [11, 27], real-time diagrammatic technique [14]
or numerical renormalization group simulations [10, 27].
Following [27], we put the Kondo peak splitting by hand in the
adatom’s spectral function (26) and for the sake of simplicity
we adopt the ‘poor man’s’ scaling approach [11, 27],6 which
estimates the splitting by

�̃ = �
↑
tip + �

↓
tip

2π
Ptip ln(D/U)

=
[

�0
tip

π
ln(D/U)

]
Ptip exp(−2kF R), (28)

where �0
tip = π |tσ

d R=0|2ρ0 gives the local coupling between the
Kondo adatom and an unpolarized tip. We use the expression

�σ
tip = �0

tip[1 + σ Ptip] exp(−2kF R), (29)

to account for both spin and spatial dependences of the tip–
adatom coupling.

4. Results

For numerical analysis we adopt the following set of model
parameters: ε0

d = −0.9 eV, � = 0.2 eV, U = 2.9 eV, D =
5.5 eV, TK = 50 K and kF = 0.189 Å

−1
[26, 27]. We consider

the cases of large, small and intermediate Fano ratio values.
For each of these cases we analyze the dependence of the
conductance on tip–adatom lateral distance R. Additionally,
for the large q limit we consider how the conductance
depends on the asymmetry between tip–adatom and adatom–
host couplings.

4.1. Large tip–adatom coupling (qR=0 = 10)

The large q limit has been achieved in experiments with
an STM tip by employing magnetic molecules as Kondo
adatoms [22, 23]. In this limit the host metal conduction
electrons tunnel towards the tip, preferably via the localized
magnetic adatom state. For the tip situated right above the
adatom (R = 0), the conductance reveals an asymmetric
splitting of the zero-bias anomaly (figure 2), characterized by
a pair of peaks at eV = −�̃ and eV = �̃. Such asymmetry
occurs due to the spin polarization of the tip (equation (11)),
the higher peak corresponding to the majority spin-up states,
while the lower one to the minority spin-down states.

6 We note that in [27] the splitting �̃ depends on �
↑
tip and not on the sum of

�
↑
tip +�

↓
tip as was proposed in [11]. In our analysis we use the proposal of [11].

Figure 2. Conductance G/Gmax as a function of the tip bias scaled in
units of Kondo resonance half-width eV/�K for qR=0 = 10 at three
different tip lateral positions with symmetric potential barriers.

A similar asymmetric splitting of the Kondo peak was
recently observed in a quantum dot system coupled to two
ferromagnetic Ni electrodes [16, 17]. The large q limit in
the system we consider resembles the standard case of a
single dot in between leads without lead-to-lead direct coupling
(embedded geometry). A wealth of theoretical works predict
the spin splitting of the Kondo peak in a quantum dot system
coupled to two ferromagnetic leads [10, 11, 15]. In those
works this splitting was tuned via the relative angle between
the left and the right lead magnetization [15], the lead’s
polarization [10] and an external magnetic field [11]. It was
found for this last case that some adatoms with large spin
(S > 1/2) deposited on a layer of Cu2N have a Kondo peak
splitting strongly dependent on the direction of an applied
magnetic field [39]. The magnetic anisotropy of these adatoms
in the presence of an inhomogeneous environment as the
Cu2N compound cause such behavior. As here we describe
an adatom with spin S = 1/2 in a homogeneous host
metal, magnetic anisotropy does not occur for the Kondo peak
splitting.

Here we show one alternative/additional way to tune the
spin splitting, by changing the tip–adatom separation (laterally
or vertically)7.

Increasing the tip–adatom lateral distance, the Fano ratio
decays according to equation (10) and the Zeeman splitting of
the Kondo peak quenches (see equation (28)). These effects
can be seen at figure 2, where the conductance is plotted for
three different values of the tip–adatom lateral distance. About
R = 6.65 Å, the two resonances merge into a single peak, thus
resulting in the standard Kondo resonance profile.

Not only the lateral tip–adatom separation can change the
spin splitting, but also the vertical tip–adatom distance. To

7 In the nonequilibrium regime, a system of a quantum dot coupled to a left
and to a right normal electrode exhibits two Kondo resonances pinned at the
Fermi levels of the leads [40]. The influence of ferromagnetic leads on this
nonequilibrium Kondo effect was studied in [11].
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Figure 3. Conductance G/Gmax at the origin as a function of the tip
bias scaled in units of Kondo resonance half-width eV/�K, for
qR=0 = 10 and different potential barriers.

mimic this effect we change the ratio �0
tip/�, thus introducing

an asymmetry between the tip–adatom (�0
tip) and adatom–host

(�) tunneling rates.
For very short vertical tip–adatom distances, the proximity

of the tip to the adatom shifts the adatom occupied
level ε0

d [41, 42] and, depending on the crystal surface
orientation, changes the Kondo temperature [36]. For example,
the Kondo temperature increases for Co on Cu(100) [41]
while for Co on Cu (111) [42] it is kept constant. In
particular for a ferromagnetic tip very close to the host
metal surface, the RKKY (Ruderman–Kittel–Kasuya–Yosida)
exchange interaction, intermediated by the host, would
contribute to the conductance [27]. Since our simulations
are for distances not very short, variations of the Kondo
temperature and the RKKY interaction do not need to be
included. Thus, moving the tip towards the adatom, the only
effect expected in the present model is the increase of the
coupling parameter �0

tip. Consequently, the splitting between
the peaks becomes more apparent (see figure 3) which can be
understood as a consequence of the enhancement of the local
tip magnetic field on the adatom due to the tip proximity.

4.2. Small tip–adatom coupling (qR=0 = 0.01)

In the small coupling limit the conductance curves (figure 4)
display dips instead of peaks observed in the large coupling
limit (figures 2 and 3). The appearance of the dips at eV = ±�̃

is a consequence of a destructive quantum interference between
the channels tip–host and tip–adatom–host. Thus it can be
easily seen from equations (24) and (25) for q → 0 and R = 0
that the LDOS behaves as

ρσ
LDOS/ρ0 = cos2 δσ

eV , (30)

which is opposite to the case qR=0 → ∞, where

ρσ
LDOS/ρ0 = sin2 δσ

eV . (31)

Figure 4. Conductance G/Gmax as a function of the tip bias scaled in
units of Kondo resonance half-width eV/�K for qR=0 = 0.01 at
three different tip lateral positions with symmetric potential barriers.

As in the case of large coupling, the increase of the tip–
adatom distance leads to a quenching of the anti-resonance
splitting as can be seen comparing the curves corresponding
to different values of R in figure 4. At R = 6.65 Å, the
asymmetric zero-bias anomaly for the dips disappears and only
the standard single anti-resonance profile is recovered. A
single dip structure in the conductance for small q is verified
for a system composed of Co on a Cu(111) surface [19, 21].
It is valid to note that, while the large q limit resembles the
embedded geometry, the small q limit gives similar results to
the T-shaped quantum dot (side-coupled geometry) [3, 43, 44].

4.3. Intermediate tip–adatom coupling (qR=0 = 1)

The intermediate case for a normal tip is characterized by the
well-known Fano–Kondo lineshape [18, 21]. However, the
introduction of a ferromagnetic tip results in distinct Fano–
Kondo profiles for each spin component. The spin-up profile is
shifted toward negative bias with an enhanced amplitude, while
the spin-down case moves in the opposite direction, being
reduced in amplitude. This is illustrated in the inset of figure 5,
where we show G↑/Gmax and G↓/Gmax.

The superposition of the spin-dependent Fano–Kondo
profiles gives rise to the appearance of a plateau around the
Fermi level (eV = 0) in the total conductance (G↑ + G↓)
for R = 0 (see figure 5). For large R (R = 6.65 Å),
this plateau vanishes due to the suppression of the adatom’s
Zeeman splitting and standard Fano–Kondo results for the
conductance with nonmagnetic tips are recovered [18, 21].

5. Conclusions

We derived a spin-resolved tunneling conductance for a system
of a spin-polarized STM tip with a single Kondo adatom
on the surface of a normal metallic host. The conductance
dependence on the tip bias was investigated for different

5
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Figure 5. Conductance G/Gmax as a function of the tip bias scaled in
units of Kondo resonance half-width eV/�K for qR=0 = 1 and three
different tip lateral positions with symmetric potential barriers.

tip–adatom lateral distances for a wide range of the Fano
parameter q , relevant for various experimental configurations.
We demonstrated that the Fano parameter drastically affects
the conductance pattern of the system. For large values of q ,
we observe an asymmetric splitting of the Kondo resonance
which is suppressed with an increase of the tip–adatom lateral
distance. For small q , the behavior of the conductance is
opposite to those observed in the large q regime—instead of a
split Kondo peak, one observes an asymmetrically split Kondo
dip. For the intermediate case we have shown that, due to
the splitting of the spin-resolved conductances (G↑ �= G↓),
the total conductance exhibits a plateau in the region of small
biases, which disappears for large enough values of a tip–
adatom lateral distance.
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Appendix

In this appendix we connect our main formulae (equations (24)
and (26)) to the previously developed formalism [37, 38] and
demonstrate how the Fano parameter (equation (9)) can be
defined within the framework of our model (equation (3)).
Adopting the notation

−→
k ≡ k, we begin by considering the

tunneling Hamiltonian (5) represented by

Htun =
∑

pσ

[
tσ
c

∑

k

ϕk(
−→
R )a†

pσ ckσ + tσ
d Ra†

pσ dσ + H.c.

]
,

(A.1)
where tσ

d R and tσ
c are the tip–adatom and tip–host hopping

elements, respectively, ϕk(
−→
R ) is a conduction electron

wavefunction evaluated at a surface position
−→
R laterally dis-

placed from the adatom. Note that, in the Hamiltonian (A.1),

the Fano factor (9) does not appear explicitly as in (6). Thus we
calculate the spin-polarized conductance according to linear
response theory [37, 38]. It leads to

Gσ (eV ) = (2π)2

(
e2

h

)
ρσ

tip

∫
dε

[
− ∂

∂ε
f (ε − eV )

]

×
(

− 1

π

)
Im

{
(tσ

c )2
∑

kq

ϕ∗
k (

−→
R )GRet

kqσ (ε)ϕq(
−→
R )

+ (tσ
c )(tσ

d R)
∑

k

ϕ∗
k (

−→
R )GRet

kdσ (ε)

+ (tσ
d R)(tσ

c )
∑

k

GRet
dkσ (ε)ϕk(

−→
R ) + (tσ

d R)2GRet
ddσ (ε)

}
,

(A.2)

with

GRet
kqσ (ε) = δkq

ε − εk + iη
+

√
�

πρ0

ε − εk + iη
GRet

dqσ (ε) (A.3)

and

GRet
kdσ (ε) =

√
�

πρ0

ε − εk + iη
GRet

ddσ (ε) (A.4)

as the Fourier transforms of the time retarded Green’s
functions:

GRet
kqσ (t − τ ) = − i

h̄
θ(t − τ )〈{ckσ (t), c†

qσ (τ )}〉, (A.5)

GRet
kdσ (t − τ ) = − i

h̄
θ(t − τ )〈{ckσ (t), d†

σ (τ )}〉 (A.6)

and

GRet
ddσ (t − τ ) = − i

h̄
θ(t − τ )〈{dσ (t), d†

σ (τ )}〉, (A.7)

respectively [1]. The energy representation of the adatom’s
Green function is

GRet
ddσ (ε) = 1

ε − εdσ + i� −∑
(ε)

, (A.8)

where
∑

(ε) is the real part of the interacting self-energy [1].
The conductance for the Kondo regime is derived

substituting equations (A.3) and (A.4) in (A.2) considering that
[
− ∂

∂ε
f (ε − eV )

]
∼ δ(ε − eV ), (A.9)

∑

k

1

ε − εk + iη
∼ −iπρ0, (A.10)

and ∑

k

ϕk(
−→
R ) ∼ J0(kF R)(2Dρ0) (A.11)

are valid approximations in the limit of T � TK and ε � D.
Thus we obtain the result

Gσ (eV ) = (2π)2

(
e2

h

)
ρσ

tipρ0(t
σ
c )2

× {[(qσ
R)2 − J 2

0 (kF R)]π�ρσ
dd (eV )

+ 2�J0(kF R)qσ
R Re{GRet

ddσ (eV )} + 1} (A.12)
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in terms of the adatom’s spectral density:

ρσ
dd (eV ) =

(
− 1

π

)
Im{GRet

ddσ (eV )} (A.13)

and a parameter that we define according to equation (9).
At this stage of the calculations as in [37, 38], this factor
is recognized as the same asymmetry parameter of Fano’s
theory [28].

In particular, the standard Fano formula [28] for the
conductance can only be obtained assuming a Lorentzian
lineshape for the adatom’s spectral density. For the Doniach–
Sunjic description (equation (26)), equation (24) is derived
instead. To that end, equation (23) and

ρσ
LDOS(eV ) = ρσ {1 − [J 2

0 (kF R) − (qσ
R)2]π�ρσ

dd(eV )

+ 2�J0(kF R)qσ
R Re{GRet

ddσ (eV )}} (A.14)

with
ρσ = ρ0

1 + |qσ
R |2 , (A.15)

as a normalization factor must be considered. The combination
of them with the phases

tan δσ
eV = − Im{GRet

ddσ (eV )}
Re{GRet

ddσ (eV )} (A.16)

and δσ
qR

(equation (25)) in (A.8) and (A.14) allow us to derive
equation (24). The result (24), dependent on the factor
qσ

R (equation (9)), leads to the quantum interference effects
predicted by Fano’s theory [28] and are confirmed by the
simulations of section 4.
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[26] Újsághy O, Kroha J, Szunyogh L and Zawadowski A 2000

Phys. Rev. Lett. 85 2557
[27] Patton K R, Kettemann S, Zhuravlev A and

Lichtenstein A 2007 Phys. Rev. B 76 100408(R)
[28] Fano U 1961 Phys. Rev. 124 1866
[29] Shelykh I A and Galkin N G 2005 Phys. Rev. B 70 05328
[30] Shelykh I A, Galkin N G and Bagraev N T 2006 Phys. Rev. B

74 165331
[31] Moldoveanu V, Tolea M, Gudmundsson V and

Manolescu A 2005 Phys. Rev. B 72 085338
[32] Frota H O and Oliveira L N 1986 Phys. Rev. B 33 7871
[33] Frota H O 1992 Phys. Rev. B 45 1096
[34] Silver R N, Gubernatis J E, Sivia D S and Jarrell M 1990

Phys. Rev. Lett. 65 496
[35] Anderson P W 1961 Phys. Rev. 124 41
[36] Costi T A, Hewson A C and Zlatić V 1994 J. Phys.: Condens.
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